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1 Introduction

The Banach–Tarski Paradox, which Jan Mycielski called “the most surpris-
ing result of theoretical mathematics” [1, p. xi] is a consequence of two
aspects of mathematics from the last two hundred years—Cantorian infinity
and the axiom of choice—which are now universally accepted but were once
highly divisive among mathematicians. In layman’s terms, it states that a
three-dimensional ball can be decomposed into finitely many “pieces”, and
then, without any form of stretching, recomposed into two copies of the
original ball.

Cantor’s relevance is mainly limited to the notion of countable and un-
countable infinite sets—that is, that infinite sets can have more than one
cardinality—and though he had many contemporary detractors, his work
was generally accepted by the time of Banach–Tarski. The axiom of choice,
however, was far more fresh a development, and a major component of a
sea change in mathematics. After Russell’s paradox among others destroyed
naive set theory, Ernst Zermelo (1871-1953)—who had independently dis-
covered the paradox before Russell published it—began formulating a new
axiomatic set theory. This, with the suggested extra axioms of Abraham
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Fraenkel (1891-1965) and Thoralf Skolem (1887-1963), became Zermelo–
Fraenkel set theory, the current standard in mathematics.

Generally, the Zermelo–Fraenkel axioms are fairly simple statements,
for example the existences of unions and power sets and that the image of
a set under a function is itself a set. The crux of Banach–Tarski, and the
controversy, is the following:

Axiom of Choice (AC). If X is a set of non-empty sets, there exists a
function f , known as a choice function on X such that, for any A ∈ X,
f(A) ∈ A. That is, the image of X under f consists of exactly one member
of each of the sets in X.

This is trivially true for finite X, and can be derived from the other
axioms, but becomes problematic when considering infinite X. AC was later
proven to be logically independent from the rest of Zermelo–Fraenkel set
theory, and therefore its validity rests entirely on being accepted for a specific
piece of mathematics. The key issue is that the choice function does not have
to be constructed, merely assumed to exist, and this existence is taken as an
axiom rather than shown by proof. To a mathematical constructivist, this
is absolute anathema; to a Platonist, however, its existence is obvious, and
that is all that matters.

An obvious question in response to such a counter-intuitive result stem-
ming from such a controversial axiom is why it doesn’t invalidate ZFC
(Zermelo–Fraenkel + Choice) in the same way that Russell’s paradox in-
validated naive set theory. This is not merely a layman’s question. In the
first contemporary reaction to the Hausdorff Paradox, a crucial building
block of Banach–Tarski, Émile Borel (1871-1956), explicitly stated that [2,
p. 188]:

“The contradiction has its origin in the application [. . . ] of Zer-
melo’s Axiom of Choice. [. . . ] The paradox results from the
fact that A is not defined, in the logical and precise sense of the
word defined. If one scorns precision and logic, one arrives at
contradictions.”

The distinction between paradoxes in the sense of Banach–Tarski and
paradoxes in the sense of Russell’s, is that Banach–Tarski is entirely logi-
cally consistent with everything that must be assumed to prove it, even if
not with our intuitions of what should be true. Russell’s paradox by con-
trast is not only inconsistent with any formulation of naive set theory, it is
inconsistent with itself. This is what forces a piece of mathematics to be
totally discarded. Banach–Tarski certainly forces one to reconsider ZFC,
but it can be—and indeed has been—accepted as one of its quirks in a way
that Russell’s paradox cannot.

Now we have set the stage for this bewildering result, to reach it properly
we need to formalise it:
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Banach–Tarski Paradox (AC). R3 is G3-paradoxical, G3 being the set
of isometries in R3. Equivalently, any ball in R3 is equidecomposable with
two copies of itself.

Then we begin by defining several key terms.

2 Groundwork

2.1 Starting Definitions

We begin with a fundamental definition:

Definition 2.1. Let G be a group acting on a set X and E ⊆ X be a non-
empty subset. Then E is G-paradoxical if for some pairwise disjoint proper
subsets A1, . . . , Am, B1, . . . , Bn of E and g1, . . . , gm, h1, . . . , hn ∈ G,
E =

⋃
gi(Ai) =

⋃
hj(Bj).

With this definition, we can now see that Banach–Tarski says that any-
thing in R3, for example a ball, can be taken apart into subsets of points,
then using only isometries some of the subsets can be transformed into the
entire ball, with other subsets left over, which can also be transformed into
the entire ball. For an example of a paradoxical set, which ends up working
similarly to the final paradox on the sphere and ball, we can consider a free
non-Abelian group with two generating elements.

2.1.1 Free Non-Abelian Groups

Definition 2.2. A free group F with a generating set M is the group of
words with letters in M . That is, if M = {σ, τ}, an example of an element
in F would be στ−1στ2σ.

A word generated by a free group can always be expressed in infinitely
many ways by adding pairs of elements and their inverses anywhere in the
word, for example

στ = στσσ−1 = στσ−1σ = σσσ−1τ

so in order to avoid discussing equivalence classes, we only include words in
F in their reduced forms, with all adjacent pairs of elements and inverses
removed. If the generators have finite order, the reduced form also replaces
every instance of σn with σn (mod |σ|)—later we will do this even for inverses.

The key aspect of this group which makes it free is the fact that the only
reduced element equivalent to the identity is the identity itself. This will
become relevant and non-trivial later when we make a free group out of rota-
tions in R3, and it will no longer be obvious that, for example, στσ−1τ−1 ̸= e.
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Theorem 2.1. A free group F with two generators is F -paradoxical (F acts
on itself by left multiplication).

Proof. Let the two generating elements be σ and τ , and consider each
element of F only in terms of σ, σ−1, τ and τ−1, for example express
τ2σ−2 as ττσ−1σ−1. For λ ∈ {σ, σ−1, τ, τ−1}, let W (λ) be the set of
words with λ as the leftmost element. We immediately notice that F =
e ∪ W (σ) ∪ W (σ−1) ∪ W (τ) ∪ W (τ−1) and w(λ) ∩ W (µ) = ∅ for λ ̸= µ.
We can then see that if h ∈ F \ W (σ), σ−1h ∈ W (σ−1) and so σσ−1h =
h ∈ σW (σ−1). The identity e is included in σW (σ−1), and therefore
F = W (σ) ∪ σW (σ−1) = W (τ) ∪ τW (τ−1).

We now need another key definition to understand the second sentence
of the formal statement of Banach–Tarski and why it is equivalent.

2.1.2 Equidecomposability

Definition 2.3. Let G be a group acting on a set X and A,B ⊆ X. A
and B are G-equidecomposable, denoted by A ∼G B, if they can each be
partitioned into pairwise disjoint subsets A1, . . . , An, B1, . . . , Bn such that
A =

⋃
Ai, B =

⋃
Bi and for all 1 ≤ i ≤ n, there exists a gi ∈ G such that

gi(Ai) = Bi.

Having defined equidecomposability, it is now in our interests to establish
that shapes are equidecomposable with the same shapes minus some points.
This both foreshadows Banach–Tarski and ends up playing a part in its
proof.

Theorem 2.2. Let x be a point on the unit circle S1. S1 \ {x} is SO2-
equidecomposable with S1 (recall that SO2 is the group of rotations on R2).

Proof. Without loss of generality we can let x = (1, 0); if it is not, simply
rotate S1 \ {x} to make this so. From now on, consider every point in S1

both in terms of points in {(x, y) ∈ R2 : x2+y2 = 1} and in terms of complex
numbers {z ∈ C : |z| = 1}, with z = x+ iy and (x, y) = (Re(z), Im(z)). Let
θ be any real number which is not a rational multiple of π, then consider
the countably infinite set D = {einθ : n ∈ N+} and its R2 equivalent. It
is clear that within the natural numbers, einθ ̸= eimθ for all n ̸= m, since
that would imply that θ(n − m) | 2π. Therefore if we define the function
ρ(z) = ze−iθ and its equivalent on R2, ρ(D) = {1} ∪D, or in terms of R2,
ρ(D) = {x} ∪D. Finally, we have:

S1 \ {x} = D ∪ S1 \ ({x} ∪D) ∼SO2 ρ(D) ∪ S1 \ ({x} ∪D) = S1
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This is easily shown to be equivalent to a solid disc with a radial line
segment missing. Simply replace each point in S1, expressed as before as a
complex number eiθ, with a line segment {αeiθ : 0 < α ≤ 1}. Then add a
centre point, which is not disturbed for the entire proof, and the rest follows.
We can now use this notion of “filling the gap” to show something perhaps
more surprising, which ends up being a crucial step for Banach–Tarski.

Theorem 2.3. Let D be a countably infinite subset of the unit sphere S2.
Then S2 \D ∼SO3 S2 (recall that SO3 is the group of rotations on R3).

Proof. Let l be a line through the origin which does not intersect any points
in D; there are uncountably many such lines. Now when rotating S2 around
the axis l, each point in D will trace a circle. Let A be the set of angles θ
such that for some n ∈ N+ and x ∈ D, rnθ(x) ∈ D, where rnθ is a rotation
through nθ radians about l. A is a countable set, so we can choose a θ /∈ A
and define ρ = rθ. By definition, ρn(D) ∩ D = ∅ for all n ∈ N+, and
therefore ρn(D) ∩ ρm(D) = ∅ for n ̸= m. Now, similarly to in Theorem 2.2,
we consider the countable set R =

⋃
n∈N+ ρn(D). Then ρ−1(R) = R ∪ D,

and we conclude similarly to Theorem 2.2:

S2 \D = R ∪ S2 \ (R ∪D) ∼SO3 ρ−1(D) ∪ S2 \ (R ∪D) = S2

Here, and with the paradoxical free group, we already have two examples
which seem similar to Banach–Tarski, taking proper subsets and translating
them into the whole, and neither of which even use the Axiom of Choice.1.
The distinction here, however, is that all of the sets we have managed to
“translate into existence” have been countable. The final leap comes in
using this approach on an uncountably infinite set with no overlaps, a leap
we are now in the position to begin taking and a leap which will require the
Axiom of Choice.

3 The Road to Banach–Tarski

3.1 Finding Rotations

We can now begin making inroads towards the final result via the Hausdorff
Paradox. From here on out, we will be considering the unit sphere S2 centred
at the origin, and instead of considering the whole isometry group G3, we
will only consider SO3 ⊂ G3. Adjusting the proof for a non-unit sphere is
trivial, extending the proof from S2 to B3 is similar to how we extended

1This should not be surprising—Cantor in fact defined infinite sets precisely as sets
which have bijections with proper subsets of themselves. Consider the naturals compared
to the even naturals for the simplest possible example.

5



Theorem 2.2 from a circle to a disc with only a single extra step needed,
and the other isometries can be ignored by translating the ball to the origin
before beginning.

Our first aim is to find two rotations σ and τ in SO3 which generate a
free group G. The words in G will all represent rotations, and again we only
consider reduced words. As mentioned before, to establish that G is a free
group, we need to establish the uniqueness property: if a word in σ and τ
does not reduce to the identity e, it does not represent a rotation equivalent
to the identity. This will then imply that each word in G represents a unique
rotation in SO3 since for g1, g2 ∈ G, g1 = g2 ⇐⇒ g1g

−1
2 = e.

There are many such pairs of rotations we can choose. When Hausdorff
originally published his paradox, he showed that if we take two rotations
through π and 2π

3 about two axes with an angle θ between them, and cos 2θ
is transcendental, then these two rotations satisfy the uniqueness property.
However, in 1978, Barbara Osofsky simplified this [3] by showing that the
property is also satisfied by the much simpler θ = π

4 . These rotations are
very easy to visualise, so we will let σ be the rotation through π about the
z axis and τ be the rotation through 2π

3 about the line z = x.
Now that our free group has generators of finite order, we can think

differently about how we reduce words. From now on, we will reduce all
words in G to words made up of {σ, τ, τ2} only. Since σ2 = τ3 = e, we
can replace all inverses in any word with equivalent non-inverses: σ−1 = σ,
τ−1 = τ2 and τ−2 = τ .

Theorem 3.1 (Uniqueness Property of σ and τ). No nontrivial word in
{σ, τ, τ2} corresponds to the identity rotation. (Adapted from [3] and [4])

Proof. We begin by noting that every reduced word in G other than e, σ, τ
and τ2 can be expressed in exactly one of the four forms:

α = τp1στp2σ . . . τpnσ

β = στp1στp2 . . . στpn

γ = τp1στp2σ . . . στpn

δ = στp1στp2 . . . στpnσ

(1)

where n ≥ 1 (except for γ where n > 1) and pi is 1 or 2.
First we show that α ̸= e. By considering the matrix representations of

σ and τ

σ =

0 0 1
0 −1 0
1 0 0

 , τ =

−1
2 −

√
3
2 0√

3
2 −1

2 0
0 0 1


we find that, for p ∈ {1, 2}

τpσ =
1

2

0 (−1)p−1
√
3 −1

0 1 (−1)p−1
√
3

2 0 0
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It follows by induction that

α =
1

2n

 m11 m12

√
3 m13

m21

√
3 m22 m23

√
3

m31 m32

√
3 m33


where m11, m21, m31, m32 and m33 are even integers and m12, m13, m22 and
m23 are odd integers. m12 ̸= 0, therefore α ̸= I3, and returning to viewing
α as a word in a free group, α ̸= e.

Now consider β as in (1). For any given word of the form β, σβσ is a
corresponding word of the form α. Therefore if there exists a β = e, then
its corresponding α = σβσ = σ2 = e, which we have shown cannot be the
case, so β ̸= e.

Next, assume that γ, again as in (1), is the word in its form that is equal
to e (recall that n > 1 for γ). First we consider the case p1 = pn. For any γ
with p1 = pn, τγτ

2 is a corresponding word of the form α (if p1 = pn = 1) or
β (if p1 = pn = 2). Therefore if there exists a γ = e, then its corresponding
α or β = τγτ2 = τ3 = e, neither of which are possible.

If instead p1 ̸= pn, assume not only that γ = e but also that it has
minimal n. We immediately notice that if p1 ̸= pn, τ

p1+pn = e. Therefore if
n > 3, for γ = τp1στp2σ . . . στpn−1στpn

στpnγτp1σ = στpnτp1στp2σ . . . στpn−1στpnτp1σ = τp2σ . . . στpn−1

is another word of the form γ with a lesser n, contradicting the assumption
that γ has minimal n. If n = 3, then for γ = e = τp1στp2στp3

e = στ3σ = στp3γτp1σ = στp3τp1στp2στp3τp1σ = τp2

and if n = 2, then for γ = e = τp1στp2

e = τp2τp1 = τp2γτp1 = τp2τp1στp2τp1 = σ

neither of which make sense, so γ ̸= e.
Finally, δ is similar to β. Once again consider δ as in (1). For any given

word of the form δ, σδσ is a corresponding word of the form γ. Therefore
if there exists a δ = e, its corresponding γ = σδσ = σ2 = e which we have
shown cannot be the case, so δ ̸= e. We have proven all the cases, so we are
done.

3.2 The Hausdorff Paradox

With Theorem 3.1 we have established that G, generated with {σ, τ, τ2},
represents a countably infinite set of unique rotations. Our next step to
get to Banach–Tarski is to break G down into three partitions, which we
will call G1, G2 and G3. For these subsets to be partitions, we must have
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Gn ∩Gm = ∅ for n ̸= m and
⋃
Gn = G. With a countably infinite set, the

two ways that it makes sense to decide which subset an element should be
assigned to are as follows: to take a property which is invariant on all but
one part of an element, or to work recursively. We will do the second.

We begin by assigning the identity e to G1, σ and τ to G2 and τ2 to G3.
Each element g ∈ G can be expressed as α1α2 . . . αn, with αi ∈ {σ, τ, τ2}; we
will call n the length of the element and denote it by l(g). We have already
assigned all elements of length 0 (the identity) and 1. Then for each g with
l(g) = 1 which has already been assigned, we will assign σg, τg and/or τ2g
to a subset, depending on the leftmost letter in g. Then we repeat this for
every element of length 2, then length 3, etc. The rules are as follows:

1. If g ∈ G1:

(a) If its leftmost letter is σ, then we assign τg to G2 and τ2g to G3

(b) If its leftmost letter is τ or τ2, then we assign σg to G2

2. If g ∈ G2:

(a) If its leftmost letter is σ, then we assign τg to G3 and τ2g to G1

(b) If its leftmost letter is τ or τ2, then we assign σg to G1

3. If g ∈ G3:

(a) If its leftmost letter is σ, then we assign τg to G1 and τ2g to G2

(b) If its leftmost letter is τ or τ2, then we assign σg to G1

Because nothing of length n is assigned until everything of length n− 1
is assigned, this will assign the entire countably infinite G to exactly one of
the subsets. We now have

G1 = {e, στ, στ2, τ2σ, στσ, . . . }
G2 = {σ, τ, τστ, στ2σ, τστ2, . . . }
G3 = {τ2, τσ, τ2στ, τ2στ2, . . . }

(2)

with relations which will lead to the Hausdorff Paradox.

Lemma 3.2. For the G1, G2, G3 we have defined, some of the elements
of which can be seen in (2), we have the following relations: τG1 = G2,
τ2G1 = G3 and σG1 = G2 ∪G3. [4]

Proof. We want these relations to be bijections, so first note that we can
rewrite them as τ2G2 = G1, τG3 = G1 and σ(G2 ∪G3) = G1.

Now we begin an inductive proof by verifying this relation for the ele-
ments of length 0 and 1. There is only one of length 0: the identity, which
is in G1. We easily verify that τe ∈ G2, τ

2e ∈ G3 and σe ∈ G2 ⊂ G2 ∪G3.
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Now we verify the relations for σ, τ ∈ G2 and τ2 ∈ G3. We can begin by
reversing the previous relations to show that σσ = τ2τ = ττ2 = e ∈ G1.
Then we can individually verify that τ2σ, στ and στ2 are all in G1.

Assume that for n > 1, the relations hold for all elements g with l(g) < n.
Choose a new arbitrary g of length n.

Case 1 (g has leftmost letter σ). (1a) in the assignment process implies that
g ∈ G1 ⇐⇒ τg ∈ G2, τ

2g ∈ G3, (2a) implies that g ∈ G2 ⇐⇒ τ2g ∈ G1

and (3a) implies that g ∈ G3 ⇐⇒ τg ∈ G1. l(σg) = n−1 so our assumption
implies:

g /∈ G1 ⇐⇒ σ(σg) = g ∈ G2 ∪G3 ⇐⇒ σg ∈ G1 ⇐⇒ σg /∈ G2 ∪G3

Case 2 (g has leftmost letter τ). (1b), (2b) and (3b) all imply that g ∈
G1 ⇐⇒ σg ∈ G2 ∪ G3. τg = τ2h, where l(h) = n − 1 and h has leftmost
letter σ, so our assumption and (3a) imply:

τg = τ2h ∈ G2 ⇐⇒ τ2g = h ∈ G3 ⇐⇒ g = τh ∈ G1

Case 3 (g has leftmost letter τ2). Again, (1b), (2b) and (3b) all imply that
g ∈ G1 ⇐⇒ σg ∈ G2 ∪G3. τg = h, where l(h) = n− 1 and h has leftmost
letter σ. Similarly, our assumption and (2a) imply:

τg = h ∈ G2 ⇐⇒ g = τ2h ∈ G1 ⇐⇒ τ2g = τh ∈ G3

Thus the relations hold in all cases for an arbitrary element of length n,
and by induction hold for the entire sets.

These relations immediately bring the paradoxical sets from earlier to
mind. Their remarkable nature should already be apparent, but now we can
finally apply it to the unit sphere and bring it right into conflict with our
geometric intuition. Here is also where we finally use the Axiom of Choice.

Theorem 3.3 (Hausdorff Paradox). The sphere S2 can be partitioned into
four sets, which we will call D, K1, K2 and K3, such that D is countably
infinite, and K1

∼= K2
∼= K3

∼= K2 ∪K3, with ∼= signifying congruence.2

Proof. Each rotation in G has two poles which are not moved when it is
applied to the sphere. We remove these from consideration in order to keep
our points well defined—otherwise any point could be moved to a pole, be
rotated but not moved, then moved to the same point it would have gone to
without that middle rotation, leading to two different rotations taking one
point to the same endpoint. We let D = {x ∈ S2 : ∃ρ ̸= e ∈ G s.t. ρ(x) = x}
be the set of poles, and since it has at most two points for each rotation in

2As an aside beyond the scope of this essay, this implies that on S2 there is no finitely
additive measure defined on all subsets preserved by congruence, since that would imply
that the measure of a given Kn is simultaneously 1

3
, 1

2
and 2

3
.
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the countably infinite G, it is also countable. We now only consider S2 \D,
which is clearly uncountable.

Any given x ∈ S2\D is taken to a unique point for each g ∈ G, which only
results in a countably infinite number of points. To solve this, we consider
G’s orbits; that is, sets G · x = {gx : g ∈ G} for every x ∈ S2 \D. Any two
orbits are either identical or disjoint, since if t = a(x) = b(y) ∈ G · x ∩G · y
and z = c(x) ∈ G · x, then z = c(x) = ca−1(t) = ca−1b(y) ∈ G · y. We can
therefore partition S2 \D into orbits of G.

Now we use the Axiom of Choice to create a choice set C ⊂ S2 \ D
containing exactly one point from each orbit. The important properties of
C are that no point in C can be rotated to a different point in C using
rotations in G, but any point in S2 \D can be reached by taking one point
in C and rotating it by some rotation in G.

We define Kn = {g(c) : g ∈ Gn, c ∈ C} for n = 1, 2, 3. Since G1, G2 and
G3 partition G, K1,K2 and K3 partition S2 \ D. It is clear that the Gn

relations in Lemma 3.2 have equivalents with Kn: applying the rotation τ
to K1 yields K2 and so K1

∼= K2, etc.

The difficult part of Banach–Tarski is well behind us now; we are almost
finished. It may now be clearer why the Axiom of Choice was controversial:
we simply defined the choice set into existence, seemingly without any rigour
whatsoever. This is not hand-waving, this is an application of the axiom as
intended.

3.3 Final Steps

Now we have successfully partitioned the uncountably infinite S2 into a
countably infinite subset D, plus three uncountably infinite subsets K1,K2

and K3. We can use the relations we have found to rotate each Kn into
K2 ∪K3; the specific rotations are σK1, στ

2K2 and στK3. We do this one
at a time, starting with K1, then splitting our new K2 ∪ K3 into K2 and
K3 by taking σK1 ∩ K2 = K2 and σK1 ∩ K3 = K3, and repeating this
for the original K2 and K3. Rotate one of our K2s and one of our K3s
into K1 = τ2K2 = τK3. Now we have decomposed the entire sphere into
four subsets, then translated three of those subsets into two copies of each
of them, giving us the subsets necessary to reconstruct the original sphere,
plus an extra sphere missing a countably infinite number of points.

However, we already know from Theorem 2.3 that a sphere missing
countably many points is equidecomposable with the entire sphere. We
apply this to “translate the poles into existence” for the second sphere, and
we have completed the proof for a sphere. Similarly to how we used a proof
on a circle and constructed an equivalent for a disc, we can augment our
proof on the sphere to one on a ball.
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We begin by converting each point into a radial line. Our entire proof
on the sphere works exactly the same on the closed ball minus the centre
if we substitute x → {tx : 0 < t ≤ 1} (the second inequality is strict if we
want to prove the theorem for an open ball). If we think of taking a ball,
then removing the centre, we can “clone” what remains. The final step is to
put the centre we removed back, then translate a new centre into existence.

Now that we are considering a ball missing only 0, there are infinitely
many circles inside the ball with only 0 missing. We apply Theorem 2.2 to
rotate one of these circles missing a point into its respective entire circle.
We have now filled in the centre, and we are done.

4 Implications

The first mathematical implication of the Banach–Tarski Paradox is that
previous notions of volume-preserving measurability have to be treated far
more carefully if not totally discarded. To focus on this, however, would be
myopic.

Banach–Tarski shows that we must choose between the seemingly in-
nocuous Axiom of Choice, which virtually all mathematicians accept outside
of specific contexts in set theory, and the very idea that three dimensional
space in mathematics perfectly corresponds to reality. How can it when
we need to jump through hoops to define something so simple as measure-
ment without leading to what seems like total nonsense? But what then do
we make of the symbiotic relationship between mathematics and physics,
which uses experiments as well as theory? Differential calculus is built on
understanding movement, and consistently had physics as one of its key mo-
tivations, from simple distance-time gradients to curl and divergence. How
do we reconcile this incongruity between theoretical work and the experi-
mentally verifiable reality which motivates it?

Of course, the orbits that we consider are so dense and precise that no
human could construct them from an actual physical ball, but that misses
the forest for the trees, and moreover feels like a way to avoid the questions
that Banach–Tarski forces to the table. Do we accept that a hypothetical
infinite-fidelity machine could indeed duplicate items? If we do, then it
is worth mentioning that the version of Banach–Tarski proven here is the
weak form. Before we state and prove the strong form, we will state (but
not prove) another theorem:

Theorem 4.1 (Banach–Schröder–Bernstein Theorem). Suppose G acts on
X and A, B ⊆ X. If A is equidecomposable with a subset of B, (A ⪯ B)
and vice versa, then A ∼G B.

The strong form of Banach–Tarski is as follows:

11



Banach–Tarski Paradox (AC) (Strong Form). For any two bounded A,
B ⊂ R3 with non-empty interior, A ∼ B. [1, p. 31]

Proof. We will prove that the strong form follows from the weak form and
Banach–Schröder–Bernstein. Choose two solid balls K, L such that A ⊆ K,
B ⊆ L. Let n ∈ N be large enough that K is covered by n overlapping
copies of L. Now for the set S of n disjoint copies of L, by Banach–Tarski
and translating the obtained copies we find that L ⪰ S. Therefore A ⊆ K ⪯
S ⪯ L ⊆ B, so A ⪯ B. The same argument works to show that B ⪯ A, and
so A ∼G3 B.

This is possibly even more absurd to imagine in the physical world.
Something must be the fundamental issue. Generally critics point to the
Axiom of Choice, and indeed the Axiom of Choice is logically equivalent
to Banach–Tarski. It is also necessary for Vitali sets, which like Banach–
Tarski cause a particular notion of measure to fail. It is not, however,
necessary for the Sierpiński–Mazurkiewicz Paradox—which shows that R2

has a paradoxical subset using the fact that e is transcendental—or the
Mycielski–Wagon Paradox [1, §4.3], an equivalent to the Hausdorff Paradox
in the hyperbolic H2. Banach–Tarski happens to act on the domain which
we expect to represent our experience of the world, but it is not the only
counter-intuitive result in mathematics by any stretch.

The Axiom of Choice is not the only notion implicated in Banach–Tarski.
As has been alluded to, the Banach–Tarski and Hausdorff Paradoxes both
wreak havoc on any attempt to define measures in ways which preserve
the properties we expect them to have (e.g. area) under the operations we
would expect to preserve them (isometries). If the subsets we take have no
sensible notion of volume, does it make sense to say that the new ball has
“the same volume” as the original? If not, why does this new ball with every
point in the original ball not make sense when attempting to measure it? If
there were answers to all of these questions, then this would not be called a
paradox. It may not have an explicit logical contradiction baked into it like
Russell’s paradox, and one could argue based on a strict personal definition
that “Banach–Tarski Paradox” is a misnomer, but it still forces us to go
over our foundational assumptions in much the same way.

In the end, disputes over Banach–Tarski may be as simple as the physi-
cist seeing a contradiction in the answer, but the mathematician seeing a
contradiction in the question.

12



References

[1] Grzegorz Tomkowicz and Stan Wagon. The Banach-Tarski Paradox. En-
cyclopedia of Mathematics and its Applications. Cambridge University
Press, 2nd edition, 2016.

[2] Gregory H. Moore. Zermelo’s Axiom of Choice: Its Origins, Develop-
ment, and Influence. Studies in the History of Mathematics and Physical
Sciences 8. Springer-Verlag New York, 1st edition, 1982. Translation of
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